71 research outputs found

    How ownership rights over microorganisms affect infectious disease control and innovation: A root-cause analysis of barriers to data sharing as experienced by key stakeholders

    Get PDF
    Background Genetic information of pathogens is an essential input for infectious disease control, public health and for research. Efficiency in preventing and responding to global outbreaks relies on timely access to such information. Still, ownership barriers stand in the way of timely sharing of genetic data from pathogens, frustrating efficient public health responses and ultimately the potential use of such resources in innovations. Under a One Health approach, stakeholders, their interests and ownership issues are manifold and need to be investigated. We interviewed key actors from governmental and non-governmental bodies to identify overlapping and conflicting interests, and the overall challenges for sharing pathogen data, to provide essential inputs to the further development of political and practical strategies for improved data sharing practices. Methods & findings To identify and prioritize barriers, 52 Key Opinion Leaders were interviewed. A root-cause analysis was performed to identify causal relations between barriers. Finally, barriers were mapped to the innovation cycle reflecting how they affect the range of surveillance, innovation, and sharing activities. Four main barrier categories were found: compliance to regulations, negative consequences, self-interest, and insufficient incentives for compliance. When grouped in sectors (research institutes, public health organizations, supra-national organizations and industry) stakeholders appear to have similar interests, more than when grouped in domains (human, veterinary and food). Considering the innovation process, most of barriers could be mapped to the initial stages of the innovation cycle as sampling and sequencing phases. These are stages of primary importance to outbreak control and public health response. A minority of barriers applied to later stages in the innovation cycle, which are of more importance to product development. Conclusion Overall, barriers are complex and entangled, due to the diversity of causal factors and their crosscutting features. Therefore, barriers must be addressed in a comprehensive and integrated manner. Stakeholders have different interests highlighting the diversity in motivations for sharing pathogen data: prioritization of public health, basic research, economic welfare and/or innovative capacity. Broad inter-sectorial discussions should start with the alignment of these interests within sectors. The improved sharing of pathogen data, especially in upstream phases of the innovation process, will generate substantial public hea

    Germinal Centers without T Cells

    Get PDF
    Germinal centers are critical for affinity maturation of antibody (Ab) responses. This process allows the production of high-efficiency neutralizing Ab that protects against virus infection and bacterial exotoxins. In germinal centers, responding B cells selectively mutate the genes that encode their receptors for antigen. This process can change Ab affinity and specificity. The mutated cells that produce high-affinity Ab are selected to become Ab-forming or memory B cells, whereas cells that have lost affinity or acquired autoreactivity are eliminated. Normally, T cells are critical for germinal center formation and subsequent B cell selection. Both processes involve engagement of CD40 on B cells by T cells. This report describes how high-affinity B cells can be induced to form large germinal centers in response to (4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll in the absence of T cells or signaling through CD40 or CD28. This requires extensive cross-linking of the B cell receptors, and a frequency of antigen-specific B cells of at least 1 in 1,000. These germinal centers abort dramatically at the time when mutated high-affinity B cells are normally selected by T cells. Thus, there is a fail-safe mechanism against autoreactivity, even in the event of thymus-independent germinal center formation

    The COMPARE Data Hubs

    Get PDF
    Data sharing enables research communities to exchange findings and build upon the knowledge that arises from their discoveries. Areas of public and animal health as well as food safety would benefit from rapid data sharing when it comes to emergencies. However, ethical, regulatory and institutional challenges, as well as lack of suitable platforms which provide an infrastructure for data sharing in structured formats, often lead to data not being shared or at most shared in form of supplementary materials in journal publications. Here, we describe an informatics platform that includes workflows for structured data storage, managing and pre-publication sharing of pathogen sequencing data and its analysis interpretations with relevant stakeholders

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies

    Get PDF
    We determine the relative rates of short GRBs in cluster and field early-type galaxies as a function of the age probability distribution of their progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the difference in the growth of stellar mass in clusters and in the field, which arises from the combined effects of the galaxy stellar mass function, the early-type fraction, and the dependence of star formation history on mass and environment. This approach complements the use of the early- to late-type host galaxy ratio, with the added benefit that the star formation histories of early-type galaxies are simpler than those of late-type galaxies, and any systematic differences between progenitors in early- and late-type galaxies are removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n = -2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2, corresponding to n ~ 0 - 1. This is similar to the value inferred from the ratio of short GRBs in early- and late-type hosts, but it differs from the value of n ~ -1 for NS binaries in the Milky Way. We stress that this general approach can be easily modified with improved knowledge of the effects of environment and mass on the build-up of stellar mass, as well as the effect of globular clusters on the short GRB rate. It can also be used to assess the age distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio

    High mass photon pairs in ℓ+ℓ−γγ events at LEP

    Full text link

    Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    Get PDF
    The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained

    Measurement of the inclusive b→τΜX branching ratio

    Full text link
    • 

    corecore